特別レポート

荷主・運輸事業者向け共同輸配送 デジタルマッチングサービスによる 積載効率の向上と復荷での運賃確保

~トラックドライバーの適正な労働時間と賃金を実現~

(-社)運輸デジタルビジネス協議会(TDBC) 代表理事 小島 薫

1. はじめに

当協会では、運輸業界の課題解決と業界のより良い未来の実現に向けて会員の企業、団体の方々と積極的な活動を推進している。

当協会では、運輸業界として物流業界の他に建設業界、旅客業界の各事業者、業界団体会員の他、さまざまな技術、ソリューションを持つ企業のサポート会員、大手荷主企業等のパートナーシップ会員、合わせて200社を超える企業、団体が参加している。当協会では、業界課題の解決策を会員企業の方々との共創で創出し、社会実装まで実現する。言い換えるならば「誰かが解決してくれるのではなく、自らが解決する」との強い意志で活動している。

今回は、当協会の活動の中で、物流の2024年問題の解決に向けた取り組みと、当協会が社会実装を実現した新物流2法の物流効率化法(正式名称:物資の流通の効率化に関する法律、以降物流効率化法と表記)で荷主、運送事業者が求められる積載効率の向上、荷待ち、荷役作業時間等の短縮を実践するための仕組みを紹介する。

2. 物流の2024年問題と 積載効率、荷待ち、荷役等時間

以前より、トラックドライバーの労働時間が、他 の産業と比較して2割長く、他の職種と比較して賃 金が、1~2割低い(時間単価に換算すると約33%低い)と言われており、トラックドライバーの人材不足や2024年4月1日からの働き方改革関連法での時間外労働時間の制限により、受託できる運送業務量の減少や長距離輸送が制限されることで、輸送能力が2024年には14%、2030年には34%が不足すると言われている。

また、輸送能力の不足は、製品を店舗や消費者に 届けることができなくなるだけでなく、製品を製造 するための原材料や部品の調達物流にも影響し、製 品を製造できなくなってしまう可能性もある。その ため、物流は国民生活や経済を支える重要な社会イ ンフラとされている。

そして、トラックドライバーの長時間、低賃金の 要因には次の2つが挙げられる。

(1) 長時間の荷待ち、荷役等時間の発生と それに対する対価が適正に支払われていない

1運行当たりの荷待ち時間は平均1時間34分、 荷役時間は1時間29分、合計3時間3分とされている。直近での調査でもそれぞれ1時間28分、1時間 34分、合計3時間2分とほとんど改善されていない。

また、この荷待ち時間について国土交通省の令和 2年4月「標準的な運賃の告示」の中で、「待機料金 は30分を超える場合において30分ごとに発生する 金額」として具体的に定めてられているものの、多 くの場合には料金として収受できていない。

一方で、この荷待ち時間は業務上拘束されている限り労働時間として扱われ、賃金が支払われて

図1 トラックドライバーの1運行当たりの 平均拘束時間とその内訳

(出典:第17回トラック輸送における取引環境・労働時間改善中央協議会(2024年12月25日) 「国土交通省提出資料 p.1

> https://www.mlit.go.jp/jidosha/content/ 001854525.pdf)

いる。物流事業者としては売上のない賃金発生となり、結果的に時間当たりの賃金低下の原因ともなっている。

また、荷役等においても、これまでの商慣行の中で、多くの場合、運賃に含むとされており、実際の 役務に対する適正な料金が収受できているとは言い 難い状況にある。

(2) 積載効率の低下による荷主の運賃圧縮指向

積載効率について、現状では40%を切り38%程度と言われており、過去の60%近い時代と比較すると、同じ量の貨物を運ぶためには、1.5倍の車両とトラックドライバーが必要との状況となっている。

この積載効率の低下の背景には、その多くが製造

現場でのジャストインタイムや流通での在庫の適正 化(在庫・品切れ・売れ残りの最少化)といった物 流以外での効率化、最適化に起因している。

一方で、荷主事業者にとっては売上高対物流コストも1.5倍となってしまうため、なんとかこれまでの1.0以下に抑えたいとの運賃圧縮指向を招いていた。しかも、1.5倍のトラックドライバーを手配したくても、少子高齢化の日本では、それもままならないため、トラックドライバーの長時間労働でなんとか回しているという状況だ。

結果的に積載効率の低下が、トラックドライバー の長時間労働と低賃金の大きな要因の1つとなって いる。

3. 新物流2法での物流効率化で 求められる荷待ち、荷役等 時間の短縮と積載効率の向上

物流効率化法は、一部を除き2025年4月1日より既に施行されており物流2024年問題の解決に向けてすべての荷主事業者、連鎖化事業者、物流事業者(トラック、鉄道、港湾運送、航空運送、倉庫)に対し、物流効率化のために取り組むべき措置につ

荷主・物流事業者等の判断基準等のポイント ※本年(2025年) 4月1日施行 <荷主・物流事業者の判断基準等> ○<u>すべての荷主</u> (発荷主、着荷主)、<u>連鎖化事業者</u> (フランチャイズチェーンの本部)、<u>物流事業者</u> (トラック、鉄道、港湾運送、航空運送、倉庫) に 対し、物流効率化のために取り組むべき措置について努力義務を課し、これらの取組の例を示した判断基準・解説書を策定。 ① 精裁効率の向 F等 ② 荷待ち時間の短縮 ③ 荷役等時間の短縮 複数の荷主の貨物の積合せ、共同配送 トラック予約受付システムの導入や混雑 パレット等の輸送用器具の導入による 帰り荷の確保等のための実態に即した 時間を回避した日時指定等による貨物 荷役等の効率化 リードタイムの確保や荷主間の連携 の出荷・納品日時の分散 等 商品を識別するタグの導入や検品・仮品 トラック予約受付システムについては、単に 繁閑差の平準化や納品日の集約等を 水準の合理化等による検品の効率化 通じた発送量・納入量の適正化 システムを導入するだけでなく、現場の実態 バース等の荷捌き場の適正な確保による を踏まえ実際に荷待ち時間の短縮につなが るような効果的な活用を行う 配車システムの導入等を通じた配車 荷役作業のための環境整備 運行計画の最適化 等 フォークリフトや荷役作業員の適切な配 置等によるトラックドライバーの負担軽減と積卸し作業の効率化等 予約システムで 🚺 ① 10:00 予約 整理しよう ② 11:00 予約 トラック予約受付システムの導入 地域における配送の共同化 パレットの利用や検品の効率化

<荷主等の取組状況に関する調査・公表>

- ○荷主等の判断基準について、物流事業者を対象として定期的なアンケート調査を行い、上記①~③の**取組状況を把握**するとともに、これらの回答の点数の高い者・低い者も含め公表(点数の低い者の公表を検討する際は、ピアルグ等により適切に実態を把握する)。
- <物流に関係する事業者等の責務>
- ○荷主等に該当しない、施設管理者、商社、ECモールの運営事業者、物流マッチングサービス提供事業者など、運送契約や貨物の受け渡しに直接関係を持たないものの商取引に影響がある者についても、その取組方針や事例等を示すことを検討。5

図2 荷主・物流事業者等の判断基準等のポイント ※本年(2025年)4月1日施行

(出典:経済産業省説明会資料「改正物流効率化法の概要について」p.5 https://www.meti.go.jp/policy/economy/distribution/2506 material.pdf)

いて図2のように①積載効率の向上等、②荷待ち時間の短縮、③荷役等時間の短縮、の努力義務を課している。

取り組むべき措置について、荷主・物流事業者等の判断基準と呼ばれており、関係者が多いため理解しやすいように判断基準解説書や解説書事例集等の資料もWebで公開されている(1)。

そして、基本方針⁽²⁾としてそれぞれの達成目標が記載されており、具体的な数値目標とともに以下のことが求められている。

(1) 荷待ち時間等(荷待ち、荷役等時間)の短縮 について

- 5割の運行で荷待ち時間等を1時間削減することで、運転者一人当たりの荷待ち時間等を年間 125時間短縮することを実現する。
- 1運行当たりの荷待ち時間等が全国平均で合計 2時間以内となるよう荷待ち時間等を削減する 必要がある。荷主等は、1回の受渡しごとの荷 待ち時間等について、原則として目標時間を1 時間以内と設定しつつ、業界特性その他の事情 によりやむを得ない場合を除き、2時間を超え ないよう荷待ち時間等を短縮するものとする。

(2) そして、積載効率の向上等について

• 日本全体のトラック輸送のうち5割の車両で50 パーセントを目指し、全体の車両で44パーセントへの増加を実現するものとする。また、1 運行当たりの輸送効率の向上に当たっては、重量ベースだけでなく、容積ベースでも改善を図るものとする。

(3) さらに、関連する施策への貢献として

- 達成に向けた取組を通じて、効率的な共同輸配 送、共同拠点利用等を図るフィジカルインター ネットの実現を図る。
- 地球温暖化対策計画に対策及び施策として位置 付けられている脱炭素物流の推進に貢献する。

また、荷主等の判断基準では、取り組みの実効性を確保するために以下の措置を講ずることも求めている⁽³⁾。

運転者の荷待ち時間等及び運転者一人当たりの

一回の運送ごとの貨物の重量の状況並びに効率 化のために実施した取組及びその効果を適切に 把握すること。

物資の流通に係るデータの標準化(電磁的記録において用いられる用語、符号その他の事項を統一し、又はその相互運用性を確保することをいう)を実施することその他の措置により、物資の流通に関する多様な主体との連携を通じた効率化のための取組の実施の円滑化を図ること。

荷待ち、荷役等時間の短縮や積載効率の向上を実現するためには、現状把握と取り組みの効果を把握し達成目標を達成するためのPDCAサイクルの実践を求めている。

また、自社の取り組みだけでは実現が難しく、多様な主体との連携をデータの標準化等による円滑化で実践することも求めている。

言い換えるなら、これまでの物流は紙(伝票)、電話、FAX等のアナログな手段で業務を回してきたが、今後はデジタル(数値)での把握や企業間連携が求められており、そのためには、デジタルの仕組みを活用した業務の変革が必須ということになる。

4. 動態管理プラットフォーム 「traevo Platform (トラエボプラットフォーム)」 による荷待ち、荷役等時間の 把握と短縮の実践

物流効率化法により荷主等は荷待ち、荷役等時間の短縮とそのための把握が求められることとなった。荷待ち、荷役等時間の算定方法については、物流効率化法およびその規則で規定されており、前述の荷主の判断基準解説書⁽³⁾のp.12でわかり易く説明されているのでぜひ、参照して欲しい。

その際に、考慮すべき点がある。

① 休憩時間の荷待ち時間からの排除

「※トラックドライバーが集貨場所等に到着した後速やかに受付等を行わずに業務上の指示等により休

84 流通ネットワーキング 2025.11.12

憩する時間など、業務から完全に離れることができる時間は、荷待ち時間に含まれません」(p.13) とされており、休憩時間を除く必要がある。

一般的なバース(トラック)予約受付システム や受付システムでは、休憩時間の把握ができないた め、別途考慮が必要となる。

② 運送事業者のデジタコ

(デジタル式運行記録計) 等を利用する場合

デジタコ等の業務記録では、荷待ち、荷役以外に も「休憩」等も記録することができるため正確な時 間の記録が可能となる。

一方で、デジタコの情報を取得できるのは、実運 送事業者となるため元請や発着荷主に情報提供する 仕組みが必要となる。

物流効率化法では、その対象が自社の管理する施設となっているため、自社の積み込み、荷卸しで発生する荷待ち、荷役等時間の把握、短縮等を実践すればよいと思っている荷主事業者がほとんどだと思うが、新物流2法のもう一方の改正運送事業法(正式名称:貨物自動車運送事業法)では、2025年4月1日より運送契約締結時に、提供する役務の内容やその対価(附帯業務料、燃料サーチャージ等を含む)等について記載した書面の交付を義務付けている。

そして、荷待ち、荷役等時間の実績に応じて元請を経由してその対価として待機時間料、積込料、取卸料等の料金が運送契約の当事者である発荷主に運賃と併せて請求が行われることになる。そのため発荷主は、元請からの料金請求に関して、適正かどうかを確認するためにも発荷主としての出荷時だけでなく着荷主側で発生した荷待ち、荷役等時間を把握する必要がある。

さらに、発荷主は、着荷主で発生した荷待ち、荷役等時間に対する料金を着荷主に請求することとなるため、請求される着荷主側も正確な実績の把握が必須となる。物流効率化法では、荷待ち、荷役等時間の把握についてサンプリングも認めているが、運送事業法に基づく料金の請求、支払いにおいては確実な把握が求められることになる。

これらの課題を解決し、荷待ち、荷役等時間を取得し、蓄積、活用、共有する仕組みが当協会の活動から生まれた動態管理プラットフォーム「traevo Platform(トラエボプラットフォーム)」だ。サービス提供会社として当協会および当協会会員の出資で設立された㈱traevoが提供している。

traevo Platformは、メーカーを超えて通信型デジタコや動態管理サービスの車両の動態情報を一元的に管理する仕組みで、実運送事業者だけでなく実運送事業者が許諾することでその情報を元請、発着荷主も参照、取得、活用することが可能となる。

また、通信型デジタコの場合には、荷待ち、荷役作業、休憩等を含む業務記録(作業ステータス)や 庫内温度等の情報も取得することが可能だ(図3)。



図3 traevo Platformの概要

このtraevo Platformの大規模な活用事例としては、サントリーホールディングス㈱の事例を公開している $^{(4)}$ 。

この中で、納入先からの配送状況に関する問い合わせへの対応に対し「これによって、各物流パートナー企業の従業員・ドライバーの対応時間は、年間で約6万時間、サントリーの問い合わせ対応時間は、年間9000時間削減される見込み」とされている。

また、このtraevo Platformでは通信型デジタコの場合には、業務記録の取得も可能なことから荷待ち、荷役等の時間等を参照したり、取得したりすることもできる⁽⁴⁾。

また、荷待ち、荷役等時間を自動集計し、レポート

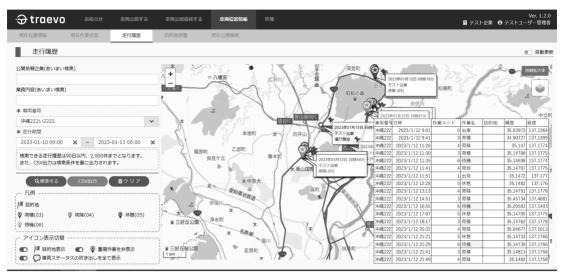


図4 traevo Platformでの荷待ち、荷役等時間の参照、取得例

形式で出力することができる「荷待ち・荷役時間集計オプション」も提供している(図5)。

これらにより、荷主側は発着荷主で発生している 荷待ち、荷役等の時間状況や取り組みの効果を把握 することが可能となる。 また、運送事業者としては運送契約に基づき、荷 待ち、荷役等の時間を実績として、その対価として 待機時間料、積込料、取卸料等の料金請求が可能と なる。

荷主側からの荷待ち、荷役等の時間についての運



図5 「荷待ち・荷役時間集計オプション | 作業時間集計の画面イメージ

送事業者への情報提供要請については、運送事業者等の判断基準解説書(5)のp.20において、

「法においては、荷主に対してトラックドライバーの荷待ち時間及び荷役等時間を短縮する努力義務が課されており、荷待ち時間・荷役等時間の現状を把握するよう努めることとされています。しかしながら、荷主においてこれらの時間を把握することが難しい場合があることが考えられることから、荷主から情報提供を求められた場合には、情報提供に協力するよう努めてください」とされている。

また、

「荷待ち時間・荷役等時間の把握にあたっては、デジタルタコグラフ等のデジタル技術の活用により、効率的に把握することができます。トラック事業者としても、これらの時間を正確に把握することにより、荷主等への荷待ち時間・荷役等時間の短縮を提案する根拠や適正な料金収受につながることが期待できます」

との料金請求についても言及されている。

さらに、荷待ち、荷役等の時間の把握だけでな く、時間短縮との事例も荷主の判断基準事例集で紹 介されている(図6)。 この中では、平均15%の荷役等時間の短縮を実現とされている。

5. 共同輸送データベースによる 共同輸送の取り組み

① 2022年度の取り組み

動態管理プラットフォーム「traevo Platform」を実現したワーキンググループで、2022年度の活動から、動態管理プラットフォームから集約した輸送情報をデータベース化することによって共同輸送を自由に検討できる場の実現をビジョンとする分科会がスタートした。大手荷主等が属するパートナーシップ会員のAGC㈱がリーダーとして推進した(図7)。

② 2023年度の取り組み

当初は、traevo Platform上の輸送情報を基に共同輸送データベースを構築し、共同輸送の検索を実施していたが、2023年度の取り組みでは、共同輸送を早期に実現するために輸送データをEXCEL形式で共同輸送データベースに投入できるようにして共同輸送の実証実験を実施した。

ワーキンググループ参加企業の内、6事業者が参加し1.257ルート、約285.000台/年の輸送デー

〇事例10 (荷役等を行う人員の適切な配置)

イオン北海道

- 荷受け専門の要員が確保出来ない小売店舗においては、店員が店内オペレーションに忙 殺されてしまうため、車両の到着に合わせた適切なタイミングで荷受け作業を開始する ことが難しいことが多く、待機時間、荷役等時間(店舗での滞留時間)を短縮すること が課題となっている。
- そこで、トラック近接を音声と光で店員に報知する装置を導入し、着荷時刻が店舗に事前通知されることにより、店員がトラックの到着前に荷受準備をすることが可能となり、一部店舗への実証導入を通じて平均15%の荷役等時間の短縮を実現。
- ▶ 加えて、荷受けの際に店舗従業員が前もって搬入口に出て、近隣住民、願客への安全配慮を行うことが可能となった。

図6 「判断基準事例集」事例10 (荷役等を行う人員の適切な配置)

(出典:経済産業省「判断基準事例集(ver.1.0)」からの抜粋(p.11、事例10) https://www.meti.go.jp/policy/economy/distribution/sippers-judgment-criteria-casestudies-book ver.1.1.pdf)

共同輸送DB構築 -トランスフォーメーションで目指す姿

動態管理PFより自動取得した輸送データを活用し、共同輸送の検索エンジンを構築



図7 共同輸送データベース概念図

(出典: TDBC Forum 2023 WG05「動態管理プラットフォームの社会実装と活用」ワーキンググループ 発表資料からの抜粋 (p.6) https://tdbc.or.jp/docs/forums/2023/2023 WG5.pdf)

タを投入し、その結果6事業者から150ルートのマッチング希望(総ルートの約12%)、さらにその内の4ルートでマッチングが成立し、実際に共同輸送(往復化、混載)を実施した(図8)。

その結果、各30~40%の積載効率の向上となり、それに伴い燃料消費量、CO₂排出量の削減も実現している。

③ 2024年度の取り組み

北海道地域フィジカルインターネット懇談会をきっかけに「共同輸配送デジタルマッチング事業」(経済産業省北海道経済産業局)として共同輸送を実施(図9)。

実施期間が2024年12月12日から2025年1月31日までの1.5ヵ月間という短期間であったにもかかわらず以下の成果を得ている。

参加事業者数44社、登録ルート数1.743ルート

© TDBC

2023年度活動報告 -実証実験結果

3月より各社にて検証開始、既に複数ルートでの共同輸送開始引き続き個社間で対象ルート拡大を検討

往復化② 大王製紙&鈴与カーゴ ネット CO2削減 : 38% 拘束時間削減: 36% 車種:ウイング 車格:10-25t

図8 共同輸送事例からの抜粋(往復化)

(出典: TDBC Forum 2024 WG05 「共同輸送データベースを活用した自由共同輸送の実現とフィールド構築」 ワーキンググループ発表資料からの抜粋 (p.14) https://tdbc.or.ip/docs/forums/2024/wg05a.pdf)

6

- 経済産業省北海道経済産業局では、物流データの見える化による事業者マッチングを促進するため、関 係機関と連携し、全国で初となる共同輸配送デジタルマッチング事業を実施。
- 共同輸配送デジタルマッチングシステム上でのデジタルによる事業者マッチングを推進することにより、 北海道内におけるより一層の共同輸配送の促進を図る。

共同輸配送デジタルマッチング事業の概要

○事業内容:

促すためのサービスを提供するとともに、北海道内における輸送情報 の集約化・データ化を行う。 本事業を通じて得られた物流データ等を活用し、共同輸配送等の動

向及びデジタルマッチングに関する効果検証を行う。

○連携先:農林水産省北海道農政事務所、国土交通省北海道開発局・ 北海道運輸局, 北海道

○事業期間: 2024年12月12日(木)~2025年1月31日(金) ○事務局:一般社団法人運輸デジタルビジネス協議会 (TDBC)



図9 北海道共同輸配送デジタルマッチング事業の概要

(出典:経済産業省北海道経済産業局主催「北海道物流WEEK2025 | 公開資料「共同輸配送デジタルマッチングの 有効性についてしからの抜粋(p.8) https://www.hkd.meti.go.ip/hoksc/20250124/data05.pdf)

に対して10事業者から82ルートのマッチング希望 (総ルート数の約5%) との実績となった。特に、北 海道内においては官民を挙げて物流クライシスに対 する懸念が深いことから、本事業を継続した場合、 登録事業者、ルート数ともに飛躍的に増加すること が想定された。

6. 荷主・運輸事業者向け 共同輸送相手の探索サービス 「traevo noWa(トラエボの 和/輪)| を活用した業種を 超えた共同輸送による **積載効率向上の実践**

積載効率は、積載率×実車率で求められる。積載 率は、トラックの最大積載重量に対する実際に積載 された重量の比率となり、過積載は法令で禁止され ているため最大100%ということになる。

また、実車率はトラックが走行した距離のうち、 実際に貨物を積載して走行した距離の比率で、やは り最大100%となる。例えば、発荷主と着荷主との 連携により長距離の場合で満載(積載率100%)と なるように集約化して往路が100%となった場合で も、復路(帰り)を空で帰ってしまうと積載効率と しては50%となってしまう。

一方で、復(帰り)荷を確保できれば、これまで それぞれ個別の便として2台の車両と2人のトラック ドライバーで実現していた輸送が1台の車両と1人の トラックドライバーに集約できることとなり、積載 効率の大幅な向上、業界全体での効率化、時間短縮 実現のための施策としては非常に有効と考えられて いる。また、運輸事業者にとっても復荷を確保でき ることは運賃、料金を得た運行となりドライバーの 賃金としての還元も可能となる。そのため、今回の 物流効率化法では積載率や実車率を向上するため荷 主事業者等に対して「他の貨物との積合せ、配送の 共同化、運送の帰路における車両への貨物の積載 | 等の共同輸送に関して運送事業者への協力も求め られている⁽³⁾。多くの場合、例えば発荷主が製造業 で、卸事業者等に製品出荷をする場合、発荷主自身 で届け先である卸事業者の近くで帰り荷を手配する ことは難しいため、これまで運送事業者が独自に手 配していた。そのため、運送事業者は荷主間の制約 条件の調整や、協議する相手探しにかかる労力が膨 大との課題があった。

共同輸送データベースを活用した共同輸送の取り 組みは、その範囲を広げて実証実験を実施してきた が、これまでの成果および関係者の皆さんからの社 会実装に対する期待を受けて2025年8月1日より 荷主・運輸事業者向け共同輸送相手の探索サービス 「traevo noWa(traevoの和/輪)」として提供を開始した。日本の物流は多くの中小運輸事業者に支えられており、その多くの事業者に参加、利用いただけるように極力省力化し低コストでの利用が可能なサービスとした。そのサービス名については以下の思いが込められている。

- Wa = 「和」業種、会社規模問わず、誰もが同じ データを公平、平等に活用することで共同輸送 の実現を目指す。
- Wa = 「輪」物流共通課題に対して各社が繋が り、協調することによって持続可能な物流環境 を構築する。

また、その後8月26日には、「経済産業省北海道経済産業局は、農林水産省北海道農政事務所、国土交通省北海道開発局・北海道運輸局、北海道とともに、事業者の輸送情報を活用して物流効率化に繋げる「共同輸配送デジタルマッチング事業」を開始し、本事業に登録する事業者を広く募集」との発表がされている(6)。

今回は、誌面の都合で割愛したが、当協会では積載効率およびそれに基づく精緻なCO₂排出量の算出および可視化についてもTDBCワーキンググループ (WGO5B) で活動しており、その成果についても公開している⁽⁷⁾。

7. おわりに: 持続可能な物流 の実現とその先のフィジカル インターネット実現に向けて

この共同輸送データベースの社会実装により参加事業者の積載効率を大幅に改善することで物流の2024年問題解決を支援し、さらに広く普及することで日本全体での物流の効率化、最適化、環境負荷軽減を実践し、持続可能な物流とその先のフィジカルインターネット実現に貢献していく。

最後に、この共同輸送データベースによる共同輸送の取り組みは、JILS((公社)日本ロジスティクスシステム協会)の2025年度ロジスティクス大賞を受賞(B)した。

これは、当協会のワーキンググループ活動として リーダーを含むメンバーの実現に向けた積極的な取 り組みの成果であり、また、その活動に賛同をいた だき連携させていただいた関係者の方々、共同輸送 の取り組みに参加いただいた各社にも深く感謝申し 上げる。

<参考文献>

- (1) 経済産業省「物流効率化法について」 https://www.meti.go.jp/policy/economy/distribution/ butsuryu-kouritsuka.html
 - 国土交通省「物流効率化法」理解促進ポータルサイト https://www.revised-logistics-act-portal.mlit.go.jp/
- (2) 基本方針(貨物自動車運送役務の持続可能な提供の確保に資する運転者の運送及び荷役等の効率化の推進に関する基本的な方針)
 - https://www.meti.go.jp/policy/economy/distribution/250304_kihonhoushin.pdf
 - 「荷主判断基準解説書」p.8
 - https://www.meti.go.jp/policy/economy/distribution/sippers-judgment-criteria-book_ver.1.2.pdf
- (3) 荷主の判断基準(荷主の貨物自動車運送役務の持続可能な提供の確保に資する運転者の運送及び荷役等の効率化に関する判断の基準となるべき事項を定める命令) https://www.meti.go.jp/policy/economy/distribution/250304_ninushi.pdf
- (4) ダイヤモンド・オンライン「サントリーが 6 年越しで 見いだした「2024年問題」解決の道筋。その鍵を握る 物流テックとは」
 - https://diamond.jp/articles/-/325838
- (5) 国土交通省「貨物自動車運送事業者等判断基準の解説 書」
 - https://www.mlit.go.jp/seisakutokatsu/freight/content/001881004.pdf
- (6) https://www.hkd.meti.go.jp/hoksc/20250826/index.
- (7) TDBC Forum 2025公開資料「CO₂排出量の精緻化を通じた物流改善と その先にあるカーボンニュートラルの 実現 |
 - https://tdbc.or.jp/docs/forums/2025/wg05b.pdf
- (8) 2025年度「ロジスティクス大賞」受賞 4 事例が決定 (JILSニュース)
 - https://www1.logistics.or.jp/news/news-9654/